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TREATMENT OF ANGULAR DISTRIBUTION OY RADIATION IN THE THEORY OF THE PROPAGATION OF 
WEAK THERMAL WAVES 

V. A. Prokof'ev 

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 8, No. 5, pp. 68-79, 1967 

This paper establishes criteria for the existence in an infinite me-  
dium of weak plane forced waves induced by radiation. 

On the basis of the equations of radiation gasdynamics, with an ar- 
bitxary (two-parameter) equation of state for the gas, the parameters 

of wave propagation (attenuation coefficients and a velocity disper- 
sion parameter) have been calculated and analyzed over the entire 
range of dimensionless numbers characterizing the motion (ratio of 

specific heats, Boltzmann number, Bouguer number). Thermal self- 
radiation, absorption of radiation by the gas, and distzibution of radia- 

tion intensity with direction have been considered. The radiation char- 
aeteristics assumed were values averaged over frequency. Waves in- 
duced by radiation are compared with pressure waves. It is shown that 
there is a difference between the results obtained and those of an analy- 

isis with radiation intensity averaged over direction. 

NOTATION 

Here y Js the ratio of specific heats; c o is the adiabatic speed of sound; 
a is the given cyclic  frequency of the forced oscillations; C[1 is the 
emittance of the gas; Z-r  is the Boltzmann number, referred to the 
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speed of sound: (2~rv) -~ is the Bougner number (optical length of the 

acoustic wave); w is the volumetric radiation absorption coeffi- 
cient; (2~q) "~ is the optical length of the wave; 2~ra~ is the wave ab- 
sorption coefficient at the wavelength of an acoustic wave of the same 
frequency; c~ r is the wave absorption coefficient on the mean flee path 
of the radiation; 2rra I is the absorption coefficient on a wavelength 
(true absorption coefficient); r is the velocity dispersion parameter 
(ratio of the wave phase velocity to the speed of sound). 
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The propagation of plane forced harmonic perturbations of in- 
finitely small amplitude in an ideal, compressible, resting, infinite 
fluid is described by the following characteristic equation [1], allow- 
ing for influx of heat as a result of thermal radiation: 

1 1 4 - q  t + m  ~- 

q ~ q r  @ iqi=m~,, m=rnr- l - imi~aCo/Z , 

v=z/co(o, Z=16dTS/pCvCo, ~ t ~ - v / Z .  (0.1) 

Here p and T are, respectively, thedensity andtemperatureofrhe 

undisturbed gas, c v is the specific heat at constant volume, and o' is 
the Stefan-Boltzmann constant. The quantity sought is the complex ex- 

ponent a of the function exp (ax +iot) to which all the gasdynamie 
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parameters are proportional, or (which is the same thing) all the di-  

mensionless quantities m or q. 
In the derivation we have used a radiative transport equation 

averaged over the optical frequencies, with accurate allowance for 
the angular distribution of intensity. On the Ieft side of (0.1) we take 
one branch of the logarithmic function with argument in the range 
(0 to 7r). Equation (0.1) is an even function of m, the signs of the 
real and imaginary parts of each root beIng identical: the symmetric 
plane attenuating waves move out in both directions from the coor- 

dinate origin. 
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For any values of Z, v, and 7 there exists a pair of roots (~m(0) 
of the characteristic equation, describing the propagation of the pres- 

sure waves (see [1]). 
Under certain conditions there is also a second pair of roots (:~m). 

These roots correspond to thermal radiative waves excited in the me- 
dium by radiative hear exchange. There are no other cases. We shall 
examine below the positive real  and imaginary parts of the roots, 
which does not restrict the generality of the conclusions. 

The existence of radiation-induced waves which have no analogs 
in the hydrodynamics of a nonabsorbing gas has been established ear- 
lier [2-6]. All the wave parameters are easily expressed in terms of 

the real part m r and the imaginary part mi of the roots 

I] = n ~ v ,  r = m i - ~  , C~al ~ ~c t - l m r .  (0.2) 
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1 
Here ~ a  are the wave a t tenuat ion coeff ic ients  per uni t  length.  

w CONDITIONS FOR THE EXISTENCE OF WAVES INDUCED BY PA- 
D IA TION 

It  fellows from (0.1) tha t  for each  va lue  of y and Z, the rea l  and 
imaginary  parts of the second root are  monotonica l ly  decreasing func- 

tions of v.  As v tends toward some va lue  v*, the imaginary  part of the 
root tends to zero (the wave ve loc i ty  then tends to inf ini ty) .  The rea l  
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part of the root  differs from zero in the ent i re  region v < v ~. For a l l  
values  v -> v* there is no second root.  The l i m i t i n g  values of the pa -  
rameters  (denoted by asterisks) are de te rmined  by Eq. (0.1), i f  m i 

tends to zero there:  

a,* : cth ct*, rr ('rv *~ ~- %*~) = 2'(~1%* (v *~ + u..*z). (1.1) 

The root a }  = 1.199678 of the first equation [7] also corresponds 
to the vanishing of the r ad ia t ive  flux. The second equat ion imposes 

restrict ions on gl (or Z), v, and y. Hence,  for e a c h v a i n e o f y a n d  Z, a 

unique posi t ive va lue  of v* or ~ (Figs. 1 and 2) is de termined.  
In the case of a piezotropic  med ium (y = 1), not  only a~,  but also 

~*  wi l l  be universal  constants. From (1.1) we have  

v* : ~t~_nZ / %* : 4.309348 Z, ~r* = ~h~ / %* = t.309348, 

~* = ~*-~ = 0.7637383, %0* = 0.9t6240Z-~. (1.2) 

For any values  of 7 and Z, the number  g~ l ies  in the in terval  

n (2T%*) -~ ~ ~* ~ n (2%*)-L (1.3) 

For Z <<1 (s = 1/z~rZctr*-z = 1 .091417Z),  

(~10 $ : '(8--r [t - -  ("~ __ t)  "(--282 -~ (T - -  4) (2 - -  '() '(--4S4 @ ' * '  ], 

V* ~ ~*TS -~ [4 -'~- (T - -  4) '(~S ~" + (T - -  t) (2T - -  3) '(-gs ~ @' ' "]. (1.4) 

For Z >> 1, the dependence  of the parameters  on y vanishes ,  

U~o* - s-~ [4 -~ (~" - -  1) '(-~s ~- + ('( - -  t) (2'( - -  3) 7-% -~ §  

v * = a . ~ * s [ t - - ( T - - t ) T - ~ s ~ - ~ - ( ' ( - - 4 ) ( 2  '() ,'(~s-~ ~ - . . . ] .  (1.5) 

If y i~ close to unity (y -- 1 = 5 << 1) we have  

I r 6 se (t - -  s"-) 6~ 
~ , o * = T L ~ + ~ +  ~ ~+ 

q- ~ (s~ - -  2~ + 4s ~- - -  1) 5~ ' ] (1.6) 
(1 + s~) ~ ~-'" " j '  

t 5 t q - s ~  . 

s s - -  5s~ - -  s'- ~- t ] 
5~ (1.7) 

(1 ~- s~l ~ @ . . . .  

As Z increases,  the quanti ty v* and its de r iva t ive  increase mono-  

tonica l ly  from the values in (1.4), which are proportional to Z and in-  
versely proportional m ),, m the values  in (1.5), which are inversely 
proportional to Z, and asympto t ica l ly  approach the values  for a p iezo-  
gop ic  medium.  For any va lue  of Z, v* is the smal ler ,  the larger  the 
va lue  of $. The value  of g~ increases monotonica l ly  with increase of 
Z from ~r (2yar*) -1 to its va lue  ~ 2 a r * )  - !  for a piezotropic med ium.  
The curve gt*(Z)'has a single point  of inf lect ion.  For any value  of Z, 

the value  of ~1" is the larger,  the smal ler  $. 
Figure 1 also gives the function Z*(v) or Z*(/r0 ). For g iven values of 

), and l ro ,  thermal  waves are formed only for Z > Z*. For each given 
op t ica l  length l r0  of an acoust ic  wave, there  is a l im i t i ng  value  of 7. 
below which the rmal  waves are not  exci ted:  beyond the acoust ic  wave 
l imi t ,  the amount  of radia t ion energy released is insufficient  to induce 
new waves. For g iven values  of y and Z, further waves are exci ted only 
a t  frequencies corresponding to acoust ic  waves with opt ica l  lengths not 

less than /v0*= 2~rv *-t. 
w i t h  increase of v from zero to v*, the rad ia t ive  flux increases from 

0 to a m a x i m u m ,  and then falls to 0 as v "~ v*. The l i m i t  va lue  of the 
absorption coeff ic ient  al0 per unit  length of acoust ic  ad iaba t ic  wave 
decreases monotonica l ly  with increasing Z (Fig. 1); its va lue  is the 
greater ,  the greater  the va lue  of y for the same vaIue  of Z. For large 
Z i t  coincides with its va lue  in a piezotropic  med ium.  The absorption 

coeff ic ient  per rad ia t ion  mean  free path is equal  in the l i m i t  to the 
constant  va lue  a~-, for a l l  values of y and Z.  The ve loc i ty  and length 

of the wave become inf in i te  in the l imi t ,  and harmonic  perturbations 

of the radia t ion field in the coordinate  p lane  genera te  exponent ia l ly  
a t tenuat ing (in space) osci l la t ions of the ent i re  med ium as a whole.  

Travel ing  waves are not  formed. 

Thermal  radia t ion  waves exis t  for gt  > g~- This condition,  because 

of Eq. 0 . 1 0 )  in [1], may be rewri t ten as 

Waves can arise only under conditions in the med ium and at  fre- 

quencies of the forced osci l lat ions such that  when the ra t io  of the rad i -  
a t ion energy emi t ted  per unit  mass of gas during an osc i l la t ion  period 

$ 
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to the mass density of the in ternal  the rmal  energy of the gas becomes 
no less than some l i m i t  quanti ty on the order of unity.  

The behavior of the wave parameters  in the neighborhood of the 

l i m i t  point a t =  a~ ,  ~ = 0 is de termined by the relat ions 

u. = %* + A~ (v - -  v*), ~l = A~ (v - -  v*), 

A i = - -  " [ l~ - l~*~ i* (p*  (c~z* - -  t )  ~" {( v2 -v  ~1: *~") ~*~" + 

§ 2v *~- [2~X*~ - -  ~*~ (X* -t- ~f*)]}, 

R = '(~Z~l*~ (%*" - -  i)  ~ [(v*'- § 5%*'-') Z *~- - -  

2%*'-~* C r  § ~*) l  + a**~ (';v*"- + %*~) ~*~, 

~* = nX* (2T~l*a~*) - i ,  

.4 2 ~ Z*a *~-.4i [T~i*(p* (%*"- - -  l ) ] - r ,  

w* ~ ~*  ~ 2 (~ - -  i )  a_*2v *~. 5,* = (~v*" - -  oc_*~l ~-. (1.9) 
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The quant i t ies  A 1 and A~ are n e g a t i v e ,  dec rease  mono ton i ca l l y  in 
absolu te  m a g n i t u d e  with inc reas ing  Z (and v),  and increase  with in -  

c rease  of y (1 <-- 7 < ,2 )  i . e . ,  

A~ ~ - -  0.126t57Z -~, A~ ~ - -  0.3t570~Z-* (Z ~ l) ,  

. t ,  ~ -- 0.t26' t5 [7 - -  4 ("r ~" -- 1)] (~;Z) -1 , 
( z ~  ~) (1.10) 

A~ ~ - -  0.31570 [T @ 4 (T ~ - -  t)]  (TZ) -1 , 

{}2. PIEZOTROPIC MEDIUM 

The  laws of wave  p ropaga t ion  in a gas,  even for y ~ 1, beg inn ing  

a t  some values of hi, co inc ide  in first a p p r o x i m a t i o n  with the  laws 

for a p iezo t rop ie  m e d i u m ,  if  Z is l a rge  enough ,  and they are  given by 

s imi lar  laws,  if  Z is sma l l .  Equat ion (0.1) for y = 1 decomposes  into 

the  two parts  

,;"- q- i = 0, V,q -~ In {(i + q) / (t - -  q)l = i ~- i~t.  (2.1) 

The first equa t ion  descr ibes  mot ion  a t  the  speed of sound for non -  

a t t enua t i ng  pressure waves .  The second equa t ion  gives the laws of m o -  

t ion for t h e r m a l  r ad i a t ion  waves .  It is e q u i v a l e n t  to the sys tem 

! (I q- %)~ § q" 

{ V i a r c t g [ 2 r t ( t - - % ' - - - r l " . ) - q ,  %"~ + if" < 1 (2 .2)  

v ~  r/ {a_arc tg [211(%~_t_~] - .  t ) - q }  ' a . ~ . + ~ l " . > .  

The  desired root  depends  only on gl .  For c~r I + 71 ~ = 1 we obta in  

a r = 0 .89666540,  11=0.44270888,  g t= 0.38218189.  I t  is c l ea r  f rom 
(2.2)  tha t  a t  >-1 (ghe equa l i ty  with ~r  = tl = 0), the  shape of the  he r -  

~0 /3  
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m o n i c  osc i l la t ions  in the  wave  is no t  m a i n t a i n e d ,  and d i s tu rbances  

a t t enua t ing  a lmos t  exponen t i a l ly  a re  induced .  For smal l  values  of ~t, 

the solut ion is g iven  by the expansions 

a~ = t q- 2 a ~ t  + 2a~e~ ~ + 2 (a~ s -~  ala.. - -  as) ~a q_ 

q- 2as (el a - -  2ala= - -  2aa) ~0 q- . . . .  

r = ~ [1 -1- a~r  -b (az ~" -}- a2) ~r ~ -'}- (a~ a 4-  2ala~ - -  aa) ~1 s @ 

-{- (a~ ~< Q- 3afiae - -  2a~au -I- ae ~- -i- aa) ~{i : . . . .  1, 

t 9 t269 
z~ = ~ -  Zv ,  a~ = - ~  , a . . - - 1 4 0 0 ,  

12 699 450 672 74t 
a~ - -  14 000 '  a, = 2 t  560 000 " (2.3)  

In first approximation el0 and r depend only on z 1. In the  v ic in i ty  

of the l i m i t  va lue  ~i*, 

% = % * - - 0 . t 2 6 1 5  (~1- -~1" ) ,  

n = - - 0 . 3 t 5 7 0 ( ~ - - ~ 1 "  ). (~.4) 

The pa ramete r s  a r ,  Z el0, a t, r Z  - l ,  ~1 (Fig.  8) are de te rmined  
only by the  quant i ty  gi- With increase  of ~1, the  coe f f i c i en t  c~ r in-  

creases  f rom 0 to a m a x i m u m  va lue  (equal  to ~1 .22  for g l m a x  g 

1.08 and then falls to the l im i t i ng  va lue  a ~ .  The  op t i ca l  wave  

number  77 also has a unique m a x i m u m  (equal  to ~0 .46  for r  ~" 0.29).  

The  produc t  Zcq0 decreases  mono ton i ca l l y  f rom ~ to a l im i t i ng  va lue .  

For a f ixed va lue  of ~t, the absorpt ion coe f f i c i en t  cqo ~ Z " l ,  and for 
fixed Z, i t  is the  smal le r ,  the grea te r  v. The absorpt ion coe f f i c i en t  

a t  increases mono ton ica l ly  f rom 1 to oo The quant i ty  r Z  "1 increases  

mono ton i ca l l y  f rom 0 to ~o with increas ing  r f rom 0 to g~. For a 

fixed va lue  of ~1. the ra t io  of ve loc i t ies  r ~ Z.  At the  coord ina te  o r i -  

g in  d r / d r  = ~ .  

~t  -- ~ 0..8, q ,f  i 

t,q 

tM, t 7  ,,: - JJll,, 
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From Fig. 3 we can  also obta in  in fo rmat ion  rega rd ing  the d e p e n d -  

ence  of the  pa ramete r s  on u. The curve  cq(v} goes to values  tha t  are  

the lower,  the  la rger  Z; curves corresponding to var ious values  of Z 

do not  in tersec t .  The coe f f i c i en t  c~10 ~ Z - I P  a for v << 1, The  two curves 

of c(ldv ) corresponding to Z 1 and Z2 e i ther  do no t  in tersect ,  or in te r -  

sect  a t  a s ingle  point ,  in tersec t ion  occurs  if  v s imul taneous ly  satisfies 

the inequal i t ies  

~!ma~: Z1 < v < ~I*Z1, ~1'*Z2 ~ v < ~imax Z2, ZI<Z2. (2.5) 

(Here g~* is the  smal les t  root of the equa t ion  c~}(gl) = 1 . )  

The curve  a r ( v  ) has a m a x i m u m .  The  ascending  b ranch  of t he  
curve is the h igher ,  the  smal le r  Z.  The  ascending  branch  of the  curve ,  
corresponding to the  la rger  Z can  intexsect  a t  one poin t  wi th  the  d e -  

mend ing  b ranch ,  corresponding to smal l  Z ,  if inequal i t ies  (2.8) can  

b e  satisfied s imul taneous ly .  Replac ing  Z 1 in (2.5) by  Z 2 (Z  l > Zz), we 

- f  -3 -2 - /  Lg ~  a 
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obta in  the  condi t ions  for the  in tersec t ion  of the  descending  b ranch  of 
the  curve  corresponding to the smal le r  Z, with the  ascending  b ranch  

corresponding to the la rger  Z.  

T h e  curve  r(v) increases  m o n o t o n i c a l l y  f rom 0 to ~ ,  and at  the  

coord ina te  or igin the der iva t ives  d r / d r  = . o  For smal l  values of 
v, the  cuxve goes  to values  tha t  are  the  g rea te r ,  the  g rea te r  the  

va lue  of Z.  A curve  corresponding to a f ixed va lue  of Z intersects  once  
with e a c h  curve  corresponding to another  va lue  of Z; the  point  of i n -  
tersect ion l ies increas ing ly  to the r igh t  and h igher ,  the la rger  the va lue  
of  Z corresponding to the second curve .  At  any point  in the posi t ive 
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quadran t  of the  p lane  (r, v),  two curves corresponding to d i f fe ren t  values  
of Z in tersec t .  

w i t h  inc reas ing  v, the op t i c a l  wave  number  ~ increases  the faster ,  
the  smal ler  the va lue  of Z.  The  quan t i ty  ~ -- Z "~/~ for smal l  v.  A 

m a x i m u m  occurs  in the  curve ,  a f te r  wh ich  n(v) decreases  f rom 0 to 

the l im i t i ng  point .  The curves for var ious  Z e a c h  in tersec t  once  (not 

coun t ing  the  or igin  of the Coordinates) ,  the  ascendIng  branch  of  the  

curve corresponding to the  la rger  va lue  of  Z,  in te rsec t ing  wi th  the  

\ . t y .  - q  

~Y/ a 8  gg E,~ 

Fig. 10 

dec reas ing  branch  which  corresponds to the smal le r  Z.  

Induced waves are  a t t enua t ed ,  whereas  pressure waves are  n o n a t -  

t enua t ing ;  a t  a l l  f requencies  pressure waves  p r edomina t e .  

w SMALL VALUES OF Z 

For Z << 1, t h e r m a l  r ad i a t ion  waves  exis t  only for v << 1, wi th  
I m l  >> 1, Iql -< 0 (1)  throughout .  In first  app rox ima t ion ,  Eq. (0 .1)  

takes the form 

i ,  i + q  . 
2q- In ~_q = ~ @ 7 i ~ ,  (8 .1)  

which  differs f rom (2.2)  in tha t  g~ is r ep l aced  by y~i .  Subsequent  a p -  

proximat ions  can  be de t e rmined  by pu t t ing  (m0 is a roo t  of Eq. ( 8 . 1 ) )  

,r~ = m0 (t -!- ~, + ee q- ea -t- " " )  �9 (8 .2)  

The  second app rox ima t ion  m 0 r  and the  third app rox ima t ion  

m0r for ~ = 0(1) a re  de t e rmined  by the  re la t ions  ( a t 0  = mr0U, ~e = 

= mioV ) 

Re ~r = D [2A%@1 ) - -  B (%o"' - -  ~lo~)] ' 

Im e I = D [A (a~o~ - -  ~0 ~") - -  2B%o%1,  

.,1 = t - -  C (l  - -  %o ~ - -  % %  

C : [(l  -- %o ~" -l- qo~) ~- ~ 4c%~'qo~-]-~, B : 7~1 + 2a.o%C, 

D = 7 (T - -  t) Zv (%o ~" + qo~ -"- (.1 "~ -~- B~) -~, (3.3)  

m~ = Z -1 (3/2"[~i-1)I/t (1 - -  ci~ 1 - -  c2~l 2 - -  cs~P -~ . - -  ), 

r = Z ( % ' r - ~ )  ~'~ [ t  + cs + (c{" + c~) ~ + 

. -  (c~ + 2c~c~ + ca) ~t ~ + . . .  I" (8.6) 

In the ne ighborhood of ~ =  ~ 

a ~ = [ t  @ ( l + L " J - ~ ( t - - v / v * ) l a _ .  *, 

'~ - ~ ~ - -  ~ - / '  ~ = ,;~;* (%*~  - l )  " ( 3 . 7 )  

Thus,  i f  Z << 1, then a t0  >> 1 for any va lue  of v < v* and it decreases  

wi th  increas ing v; for smal l  va lues  of v,  the  coe f f i c i en t  %0 is inversely  p ro -  
por t iona l  to the  square roo t  of  the  f requency .  T h e r m a l  r ad i a t ion  waves  

for Z << 1 are  a t t enua ted  m u c h  more  r ap id ly  than pressure waves of the  

s ame  f requency .  The coe f f i c i en t  a l  >> 1 also increases  with an  increase  

or decrease  in Z,  and the shape of  the  wave  becomes  dis tor ted.  More 

than  l ikely ,  these are  in i t i a l  d i s turbances  a t t enua t i ng  exponen t i a l ly ,  

a cco rd ing  to a somewha t  changed  Bouguer law.  The waves a re  not  

formed in r e a l i t y .  The ve loc i ty  of p ropaga t ion  is smal l  for v << 1, and 

is propor t ional  to the  square root  of the  f requency;  with inc reas ing  v 

the  ve loc i ty  and the wave leng th  inc rease  m o n o t o n i c a l l y  f rom 0 to ~ .  

The  coef f ic ien ts  a r and 0 inc rease  f rom 0 to  a m a x i m u m ,  fo l lowing 

wh ich  a v " * a r *  and ~'->0.  

w LARGE VALUES OF Z 

For la rge  values  of Z a solut ion descr ib ing  t h e r m a l  r ad i a t ion  

waves  exists over a wide r a n g e  of values  of v .  

1) For v << 1, Z v  << 1, expansions (8,6) a re  va l id .  The  t he rma l  
r ad ia t ion  waves  are  a t t enua ted  m u c h  more  s t rongly,  they are  p ropa-  

ga ted  much  more  slowly than the pressure waves ,  and they a re  m u c h  

shorter than the la t t e r .  With inc reas ing  v, the coef f ic ien t s  a l  and c~0 

dec rease ,  and the  quant i t ies  r and a r  increase .  The coef f ic ien t s  

cq0 and a r are  the grea te r ,  the  g rea t e r  the  va lue  of  7 and the  smal ler  
the va lue  of Z,  The  ve loc i ty  and the  wave l eng th  are  the  la rger ,  the  

smal le r  the va lue  of y and the l a rger  the  va lue  of Z.  The  coe f f i c i en t  

a t decreases  with inc reas ing  y and Z. 

i rCZO I / I  I I I /  I 

z-}~ lee ~e 
1 

0 s ~# 88  g8 

too* [t § Ti~, -}- (ma~v ~" - -  I)-11 e2 = too% ~ [t  -i- 7i~t + 

@ (2mo~v ~ - -  t)  (m~v a - -  t ) -  ~] - -  (7 - -  l) 7i~i (mo%1 + ?)~ 

For smal l  values  of ~t (wi th  v << 1, Zv  << 1 s imul taneously)  

/Tb0V = ( l  + i )  ( a / 2 r ~ l )  1/2, g l  - =  - -  i c l ~ i ,  

e 2  - -  - -  c , . ; ~ %  e 3  = - -  i c s  

c~ = V~oY (1 - -  Z ~ / ZoD, Zo ~ = 5.4"r ~ / (7 - -  t ) ,  

c~ = ~~ ~ - -  %0 (T - -  1) F" + ~/72 (~ - -  t)(5 - -  7) 7 ~ Z  4 , 

ca = 2cl a + 1/6c2" (Z" - -  SiT) - -  G/~Tc~ (7Z ~ - -  907) - -  

- -  c2 [c~ + l/a (27 - -  3) Z ~1 -}- ~t~s (Z ~ - -  7T), 

cqo ~ Z -~ (*/~T/'~-~) ~'~ (t ~ c ~  -- c ~  4- c.~, a 4- �9 - �9 ), 

(3 .4)  

( s . 5 )  

Fig. ii 

2) For v --< 1, Zv = 0(1) the desired root  of the cha rac te r i s t i c  equa -  
t ion is g iven  by expansions (4.2) of r e f e r ence  [1] where  

U l  �9 tt 1 
m r ~  ~r27zl ' r '%~ ]/-2~zl ( t ~ T < 2 ) ,  (4.1) 

Ul=[t l2v(aa+a~. - - z~)1%,  u~ .=I~ i2T(as - -~q-z~) ]  '"- ' 

aa = [1 -}- a~ -J- zl ~ - -  2 (ao.zx - -  aa)] % , (4.2)  

and the quant i t ies  a 1, a s, and as are  g iven  in [1].  In first a p p r o x i m a -  

t ion 

cqa = u~ /V~z~ ,  % = u:  ]/-a/-~, cq = u~:/u,, 
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These expressions also y ie ld  formulas in first approximat ion  when 

Zv << 1 and v << 1, Zv >> 1, i . e . ,  they are sui table  in first approxima-  

t ion, when v << 1, ~1 << 1. Both pairs of roots axe of order 1 and axe 

g iven in first approximat ion  by the values  of Zv and 7. The coeff i -  

c i en t  at0 decreases monotonica l ly  with increasing Zv.  The coeff ic ien t  

a r is a smal l  quant i ty ,  increasing monoton ica l ly  with Zv. For a fixed 
va lue  of Zv, the coef f ic ien t  c~ r ~ Z - ' .  The coeff ic ien t  a I (Fig. 4) has 
a m i n i m u m  

Zlmin ~ I , 

cq min = (t @ y 2 --  ~) / (1-- r  (4.4) 

The m i n i m u m  is the smal ler ,  the  larger 7 (for 7 = 2, s /s ,  s /~ ,  
l /s ,  4/s, 6/5, n/10 the values are, respect ive ly ,  Cq0mi n = 0.4142136, 

0.6885003, 0.7673269, 0.8128361, 0.8430390, 0.9041691, 0.9511225). 

The wave ve loc i ty  increases monotonica l ly  with increasing Zv, and in 

this region there is a ~ans i t ion  from subsonic to supersonic ve loc i ty .  
The quanti ty ~ is smalI ,  increases monoton ica l ly  with increase of v 
(for g iven Z), and decreases monotonica l ly  with increase of Z (for 
g iven  v). In the region Zv = 0 (1) the cuxves of c~to(v) (and also of 

c~t0(~ ~)) for the same values of Z but different  values  of Y intersect ,  and 
after intersect ion the curve corresponding to the smal ler  va lue  of Y 
l ies  higher .  

The ra t io  m (a)  of a t tenuat ion  coeff icients  for thermal  radia t ion 
waves and pressure waves a t  a fixed length,  and the ra t io  a ~  0 of the 

true a t tenuat ion coeff icients  in this region reach  m i n i m u m  values 
greater  than unity.  For any value of Z, and for sma l l  v, the p~essure 
waves predominate .  The rat io  of ve loc i t i e s  and wavelengths r( ~0 in-  

creases monotonica l ly  with increase of Zv, and reaches unity for 

z 1 = 7/2. 

If we consider $ -~ 2, then for $ = 2 we have  

z,<l 

%0 = ~ -  t>. ~o = ~ 1),  

a, = [(~o + t) / (~o - -  l)l"L yo = z~-~ [2 (t + ~ ' / '  ; (4 .5)  

z ~ =  t :[:0 

z,> t 

~,o= ~ ,  ~=1'-~, 
(4.6) 

Yo ' =  ( z t - -  ~ ' 1 . ' ~ " - -  (4.7) 
2z~ ) " 

If 7 > 2, then in p lace  of a5 in (4.1) we must  put 

ad = [1 + a~ + zd- -- 2(a~.z~ + a~)]''". (4.8) 

At the same point, for 7 -> 2, 

~ ( ' )  = V~- [ ( g ~  - t) (~ - ~ (~l/'f(y-:-ff-- 2))1 ','~ 

a/ r )  = oh ~ 1 /2  - -  1 

m, = V~ [( ~ - -  ~) (~ + l;~-(~ - - ~  '/' 

m~ = % [ ( ] f~  + t) (~ + ~ (1/-~[f=~-- 2))1 ''~ 

,.(~r) = V.- V-2 ( l f ~  - ~V-C--~) < l ,  ~(~) = i (4.1o) 

The coefficients  cq of both kinds of waves in this region,  for any Y, 
fa i l  be tween 0 and 1, and for Z l=  1 the coeff ic ients  of the different  

kinds of waves draw together  with increasing 7, and for 7 = 2 they 
merge,  as do the coeff icients  a~0. w i t h  further increase of 7 for z t = 1, 
an angle  point is formed if  the pressure waves are understood to be 
those waves which are continuously convert ing to sound waves at  t h e  

edges of the region (Z, v). 
B) In the case gt  << 1, Zv >> 1 for any values of Z and v, we have  

a~o = Vo.z~-~ ~ [l - -  h + L~ § o @)1, 

n = ~ [1 + h + h + o (I,')1, 

a~ = t = 2 h  -l- 2In'- -~ O (k), 

r = t f ~  i t  - -  i~ - -  h + i~ ~ + 0 (k)],  

h = -  b; - -  1 - -  ~/~v'-~ (27z0-~ , 

1~_ = [(~ -- l ) ,  

(7 -- 3~ + 6~:~) -- mlm~%q (8~"-zd")-~, 

m -~ k = ~  z~ ( n = - m = 3 ;  n, r a = 0 ,  t, 2 , 3 ) .  (4.11) 

In this region (xto, c~ r ,  c~z and r are the larger,  the smal ler  7. 
The the rma l  radia t ion  waves in this range of Z and v axe a t tenuated 

weak!y over the length of an acoust ic  wave and over the radia t ion  free 

path, with at0 ~ v " t /2 ,  a r  ~ v i n ,  %~ ~ v l/~. The correct ion to the 
first approximat ion of the absorption coeff ic ient  is nega t ive  for v < 

< ~*  ~.[5( 7 - 1)/(37)] i n ,  and posit ive for v > V * ( i f  7 = 2, S/a, a / ~ ,  

7/s ,  ~/a, ~/~, n/10, then,  correspondingly, V* = 0.9128% 0.81650, 

0.69007, 0. '/4536, 0.64550, 0.52705, 0.038925). The coeff ic ient  c~ 
reaches  the va lue  1 for v = ~ *, after which i t  continues m increase  mono-  

tun ica l ly  along with v. Since a~ is close to unity,  the shape of the wave is 
distorted. In this region the quant i ty  8 >> 1 [1] for any value  of v, for which 
reason we have,  in first approximat ion ,  

At the point z l =  1 for 1 < 7 < 2, the pressuxe wave absorption co-  
eff icients  ~h0)and ~ t ) l : l  ] have  m a x i m a ,  while  for the rmal  rad ia -  
Non waves c~ 1 and the ra t io  r have  m i n i m a .  The paxameters of both 
waves at  this point are 

miO) = ~A [ ] /~  (2 + 2 ~ -  l f~) ] ' " ,  

a~ c~) = (l  - -  g 2 - -  ~)(l + 1/~-)-~ < t , 

, ,v = V~ [ ] f ~  (2 + l / V - ~  - V~)]  v~, 

~ = v,. [ 1 /~  (2 - ~ + V~)I  "~ 

~,~(~) = 2 + ~ - I / T  a(~ ) = ~ + Y 2 - 

2V5~-~+ VTJ ' 

r (~t) = ~ . (4.12) 

For v << 1, Zv >> 1, and for v >> 1, r << 1, we obtain,  respect ively ,  

re(g1) "~- ~ Ct(21) = 2 ] / ~  (4.14)  
(~ = t) w ' ( i - -  l)  ~;" 

The rat io m (zl) (v) for fixed Z increases from the value  in (4.13) 
to a m a x i m u m ,  and then decreases monotonica l ly  to the values  in 
(4.14). The m a x i m u m  value  of v is de termined by the root of the equa-  

t ion ( ( y v ) ~ x  = 0.791068980) 

5 (1 -7 T v~') arc tg ( ] ~ v )  = ] /~v  (5 -}- 37v~ (4.15) 
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The values of v and m(  z0 at  the m a x i m u m  point are as follows: 

T = 1.1 1,2 4/3 t .4 

Vmax= 0.75425467 0.72214387 0.685085 0.66857531 

:nma x(~l) / ]/'~-- = 5.4894202 2.8050695 1.7279622 1.457640t 

%" = 1 . 5  5 / 3  2 3 

Vma x ~ 0.64590511 0.61275939 0.55937024 0.45672388 

m(er) ~ ] / ' ~ - -  t.1863999 0.91354880 0.63743485 0.35271881 max ] 

For v << 1 the ra t io  m(~1) > 1. In the region of modera te ly  large v, 
and also in the region where v >> 1, i f  

Z >~ v ~ (6Z) 'h [T ~ -- t)~ -% , (4.16) 

the rat io  m( ~0 < 1 and the induced rad ia t ion  waves p redomina te ;  
they are a t tenuated more slowly, and are propagated with greater  ve -  
loci ty .  

Formula (4.12) for r (~)  is va l id  for any v in the range considered. 
The ve loc i ty  and length of the waves induced by radia t ion are greater  

than the ve loc i ty  and length of the acoust ic  waves and of pressure 

waves of the same frequency. The ve loc i ty  of the waves is proportional,  
and  their  length inversely proportional,  to o rt~. The ra t io  of ve loc i t i es  

increases with increasing v and 7, and decreases with increasing Z.  
The ratios are r(~O and r > 1. 

The rat io  a(~1) m Z >> 1 throughout the ent i re  range of v. Depend-  
ing on v, i t  varies  [1] as the function K'(v), and has a m a x i m u m  

"m~.~ = 1.s~4094/1/-~, =~2.~ = 0.4~9756 1 G z / ( ~ -  ~). (4.1v) 

4) In the region v = 0(z) the root  of the charac ter i s t ic  equat ion is 
a smal l  quanti ty.  In first approximat ion  Eq. (2.2) is val id ,  and the 
waves propagate  according to the laws for a piezotropic  med ium.  If  
the solution for a p iezo=opic  med ium is assumed as a first approxima-  
tion, then the second and third approximations for any value of 7 are 
determined by the expressions 

(T - -  t~ ~ [AD - -  BC ~- i (AC -~- BD)] 

e~ : E (mo~-V ~ - -  i ~ l E )  ' 

A = taro  ~ - -  m i o  ~ - -  v ~ ( taro  ~ - -  6mro~-m~o ~- -t- m l o  ~) , 

C = (mr0 ~ - -  mi0s) v ~ - -  2~lmr0mi0 ' E ~ t - -  mo~-v ~" , 

D : 2v*"rn.romio -[- ~ l v "  ( rare  ~ - -  m i o  ~ - -  ~l  �9 (4.18) 

I t  is seen from (1.5) that  for large values  of Z in the v ic in i ty  of g~  
the va lue  of al0 is smal l ,  ~while the value  of r is large.  The waves 

are at tenuated weakly  on the acoust ic  wavelength ,  and are propagated 

at  very great  supersonic ve loc i ty .  With increasing gl,  the value  of ai0 
decreases,  and a l  and r increase.  In this region the curves of al0(v ) 

(and also al0(gj)  ) for various 7 again intersect ,  and after intersect ion,  
the curve for the larger y wi l l  go higher.  But the difference between 

al0(v ) for various values of 7 is only a smal l  quanti ty of order v -1. The 
coeff ic ient  a r in the region ~1 = 0(1) reaches a m a x i m u m ,  after 
which i t  decreases monotonica l ly  to a ~  for ~ 1 - - ~ .  

The ratios m (20 < 1, and r ~  l) > 1 for ;1---~r The rat io  m (~l) be-  
comes less than 1 ei ther  for gl  << 1 i f  (4.16) is satisfied, or for g l =  
= 0(1) in the opposite case; starting from a cer ta in  gl  (for modera te  or 
large v) the waves induced by radia t ion  become  predominant ,  and, 
with increasing v,  this predominance  increases (m(~0 decreases and 
r ~  1) increases). 

The ra t io  c~(~'l), with increasing v in the region of moderate  values 
of ~l, reaches a second m i n i m u m ,  much  greater  than unity,  after 
which i t  increases without  l i m i t  for ~ - -~ r  

w PROPERTIES OF WAVES INDUCED BY RADIATION 

This section presents results from the solution of the charac ter i s t ic  

equation for the ent i re  range of values  of 7, v, and Z. 

Absorption Coeff ic ient  on the Acoust ic  Wavelength  (Fig. 5). w i t h  

var ia t ion of ~1 from 0 to ~l*, for fixed 7 and Z, the absolute values  of 

m r and m i decrease  from co to mr* and 0. At smal l  Z the curves of 
al0(r and al0(v) for the same Z but different  7 intersect  once each in 
the region ~1 = 0(1); the curve corresponding to the lower 7 goes higher 

after intersection.  The smal ler  the value  of y, the farther the curve 

goes to the right,  and the lower the l i m i t i n g  value  of a~0. With in- 
creasing Z, a second intersect ion occurs. For Z >> 1 i t  occurs in the 
region Zv = 0(1). Up to the first intersect ion point, and after the second 

point, a i0  is larger for larger  y and between the two, at0 is larger for 
smal le r  y and the same Z and v.  With increasing gz and Z, the de-  

pendence of the parameters  on y is smoothed. The larger the value  of 
Z, the greater the range of 41 or v in which the parameters  coincide  

with their values  at  7 = 1. For each  7 the curves of al0(~ 0 are lower 
and go farther to the right,  the larger  the vaine of Z. The curves of 
ai0(v ) have  the same dependence on Z and 7, and their dependence on 
v is analogous to that  on gl. The solid l ines in Fig. 5 show the depend-  
ence  of cq0(gj.) for 7 = S/s, the dashed l ines show the position for 7 = 

= 1 and the dot-dash l ines g ive  the l i m i t i n g  values  of a~0. 

The ve loc i ty  and wavelength  with var ia t ion  of g l  from 0 to gl* (or 
of v from O to v*) increase monotonica l ly  from 0 to =(F ig .  6 for ~, = 

=5/3). For sufficiently smal l  ~1 (or v) the waves are subsonic, and their  
wavelength is shorter than tha t  of acoust ic  waves, whi le  beginning at  

cer ta in  values  of ~l.(ur of v), depending on 7 and Z, they become 

supersonic and longer than the acoust ic  waves.  The curves of r(~ I )  and 

r(v) emerge from the coordinate  origin with ve r t i ca l  tangents.  The 
curve z(gz)near  the origin is the higher,  the larger  the va lue  of Z and 
the smaller  the va lue  of 7, whi le  eIose to g~ the curve  is higher,  and 
i t  (asymptot ica l ly)  approaches infini ty ear l ier ,  the smal ler  the va lue  of 
Z and the greater  the va lue  of 7. Curves for the same 7, hut different  
Z, or for the same Z, but different  7, intersect  each other once (with 
the except ion of the coordinate origin).  

Optical  Wave Number.  The curves of ~ (~1)emerge  from the coor-  
d ina te  origin with a slope independent  of Z and proportional to (y)l/~, 
they reach a m a x i m u m ,  and then monotonica l ly  approach the x-axis ,  

a s ~i ' ~  ~i*; the  larger  the va lue  of Z,  and the smal ler  the va lue  of 
7, the closer the descending branch approaches from the le f t  to the 
curve for a piezotropie  gas. 

The absorption coeff ic ient  a r on the radia t ion free path,  with in-  
creasing ~i from 0 to g~  (of v from 0 to v*), first increases from 0 to a 

m a x i m u m ,  in the region of modera te  values  of ~i, whose m a x i m u m  
depends on Z and 7 (Fig. 7), and then decreases to a t *  for any values 

of 7 and Z. Al l  the curves a r (~1), a t ( v )  are tangent  to the y -ax i s  
a t  the origin of the coordinates.  The curves C~r(g ~ near  the origin do 
not  depend exp l ic i t ly  on Z and progress the more steeply,  the larger 
the va lue  of 7- The curve a r (V  ) progresses the more steeply,  the 
smal ler  the value  of Z. Near r  both curves decrease  more rapidly for 
larger 7; the curve c~r(r decreases more rapidly for larger  Z, and the 
curve a r ( v  ) decreases more rapidly  for smal ler  Z. The m a x i m a  of the 
curves are located farther to the right,  the larger  the va lue  of Z and 
the smaller  the value  of 7. Figure 7 shows the curves of a r (~1)  for 
7 = s / s  and various Z.  The dot-dash l ine  (below the l ine  Z = 10) cor-  



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 47 

responds to y = 1 and does not  depend on Z. The l ine  for Z << 1, 7 = 

= 5/3 breaks away when E l=  0.78561, for Z = 2.5, y = s/s when ~1= 
= 1.2412 for y = 1 a~ ~1 = 1.3093. 

The true absorption coeff ic ien t  a I for smal l  v, when E1 and Zv are 

s imultaneously smal l ,  is close to 1, and is de termined by (3.6). In the 

v ic in i ty  of v = O, the quanti ty a 1> 1, i f  Z -< Z0, and a l <  1, if  Z > 
> Z0 (Z0 = 8.08332, 6.23538, 5.36656, 5.14393, 4.92950, 4.8, 

4.74342, 4.64758, for y = 1.1, 1.2, 4/s, 1.4, 1.5, 1.6, 5/s, 2, respec-  
t ively) .  If Z -<Z0, then c~ 1 Increases monotonica l ly  from-1 to ~ with 
increasing El(or  v) from 0 to El* (or v ~) (Fig. 8 for ~, = s/~). The curves 
rise the more steeply,  the smal ler  the va lue  of Z. For Z = Z0, the 
curve a l (g .  ) a t  the point  cq = 1, gi = O, exhibits  t angency  of second order 
with t h e l i n e  a ,  = 1. If Z < Z0, Z < (5.4)1/27, then the larger  the value  of 

y, the steeper the rise of the curves; if  Z > Z0 > (5.4)112y, then the 
larger  the va lue  of y, the smal ler  the angle  at  which the curves emerge .  

For Z > Z0 and any y, with increasing e l ( o r  v) from 0 to ~1" (or v*), 
the coeff ic ient  a I decreases from 1 to a m i n i m u m ,  and then increases 
without  bound. The m i n i m u m  va lue  of a t  for Z very close to Z9, and 
for Z >> 1 is de termined,  respect ive ly ,  by the formulas 

% ~ i .  = ~ , 

:Xl rain == 1 - -  4/3 ] / - -  1/scl 3 / ca,  (5.1) 

Vmin=3/Z, 

%mLn=(i + V 2 - - 7 ) / ( i  + If T) . (5 .2)  

With increase of Z from Z0 to ~o, the va lue  of a l m i n  decreases 
from 1 to the value  of (5.3); E lmIn  increases from 0 to a m a x i m u m  
value ,  and then decreases monoton ica l ly .  The m I n i m u m  a t  is the 
lower, the greater  the va lue  of y. The curve departs downward more 
steeply from the point Ei = 01, c( = 1, the larger  the value  of Z and the 

smal ler  the va lue  of 7 ( i f  V > 2, Z > ( 5 A / ~ y ,  then the curve is the 
steeper,  the larger the va lue  of y). For Z > Z0 and 0 -<v -< v n,  the 
coef f ic ien t  cq _~ 1. If  Z is close to Z0, then v u ; ( - - c i / e s )  i12 Z. 

With increasing Z, the value  of v u increases from 0 to [5 (y -- 1) /  

/ (3  ~)]-i /2.  The quanti ty ~1 is never a smal l  quanti ty;  the wave shape 
is not main ta ined .  

Comparison with Pressure Waves.  Absorption. As long as the va lue  

of Z is s m a l l  the ra t io  mr  zI) >>1 decreases with increasing E1 or v 
(Figs. 9, 10 for y = s/s).  The pressure waves predominate .  With in-  

creasing Z, the genera l  form of the function m(~1) changes,  becoming  
close to that  described in w for Z >> 1, with one m i n i m u m ,  greater  
than unity,  and a m a x i m u m .  For a cer ta in  Z equal i ty  m~i=  1 is a t -  
mined .  For a g iven y this is a t ta ined (with increasing Z) first for a 

cer ta in  va lue  of Z**, equai  to the l i m i t i n g  va lue  of Z*, and occurs only at  

the point  gl  = gl** -> gl* (or v = v** ~ v*). With further increase in 
Z > Z** ~ 2 (3 ) I /~y / (y  -- 1) the inequal i ty  m@ l) < 1 is satisfied for 
an increasingly  larger  segment  of v (or of gD, with its r ight-hand end 
at  the point v -~ v*  (g l  --~ g~*). For Z > Z** the induced wave predomi-  

nates in the range  v** -< v < v*, the predominance  being greater  for 

larger  7. Z, and v. Figure 10 shows the ra t io  of the absorption coef-  

f ic ient  for t he rma l  rad ia t ion  waves and pressure waves for y = ~/s 
(sol id lines), 7 = ~/s (dot-dash lines), for the values of Z shown on the 
curves: the l i m i t i n g  values  of the ra t io  are shown by the dashed lines. 

Comparison With P~essure Waves.  Veloci ty .  The rat io  r (%1) in-  
creases monotonica l ly  from 0 to ~o with increasing v (or ~ ) ( F i g .  11 

for y = s/a).  For smal l  v, the pressure waves predominate  also as re -  
gards ve loc i ty  ofs  For values of the parameters  satisfying 
the inequal i ty  m (It) < I ,  the inequal i ty  r(zl) > 1 also holds true. 

Comparison With Average Theories.  Induced waves were examined  
in [8] with averaging over the direct ions of the equat ion of reac t ion  
transfer. The character is t ic  equat ion took the form (the averaging co-  
eff icients  were included in q0 and E1 e) : 

i i +  " l + m ~  
i - q'~ - ~ ,~ io  - - - ~ - ~  �9 ( 5 . 3 )  

From accurate  ca lcu la t ion  of the distribution of radia t ion with d i -  
rect ion,  i t  follows tha t  waves wi l l  exis t  only in a l imi t ed  range of 
values of u(y, Z) since averaging over d i rec t ion  leads to the exis tence 
of waves for any values  of 7, Z and v.  In averaged theory the result  
is that  with var ia t ion of E1 from 0 to ~o, the coef f ic ien t  a T increases 
monotonica l ly  from 0 to g-1 (g is the averaging coeff icient) .  I t  fol-  

lows from exac t  theory that  a I increases from 0 to c~v* with increase 

of El from 0 to El*, and reaches  a m a x i m u m  in this region.  It  has 
been shown in averaged theory that  a 1 < 1 for Z < Z0, 1 ~ y < 2 and 

~I > 0. It follows from exac t  theory tha t  for 7 close to 1 and Z < Z0~ 
the coeff ic ient  a r  is less than 1 (by a smal l  quanti ty)  in some range 

of low values of v. For smal l  El the le f t  side of (5.1) and (6.4) for g = 

= 1/(3) 1/2 differ by the smal l  t e rms  0([q[4), and both theories give iden-  
t i ca l  results; the d ivergence  increases with increase of El. However, 
in many respects, the two theories g ive  a convergent  general  picture 
of motion,  even in the general  case.  
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